
A chain of random resistors: the resistance distribution

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 7409

(http://iopscience.iop.org/0953-8984/12/33/308)

Download details:

IP Address: 171.66.16.221

The article was downloaded on 16/05/2010 at 06:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/33
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 12 (2000) 7409–7420. Printed in the UK PII: S0953-8984(00)13765-8

A chain of random resistors: the resistance distribution

B D Laikhtman
Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel

Received 4 May 2000

Abstract. The distribution of the resistance of a chain which is made of resistors with random
activation energies is studied. The main purpose is to study the case of low temperature when the
distribution of the resistances comprising the chain is exponentially wide and the chain resistance
is typically characterized by the resistor with maximal activation energy. It appears that in this case
the chain resistance distribution is so wide that the standard deviation of the resistance is much
larger than the average value for the resistor with maximal activation energy. This result makes
the characterization of the chain by any average resistance meaningless. The chain resistance
distribution in this case appears to be not universal and strongly depends on the activation energy
distribution.

1. Introduction

The main conductivity mechanisms in crystalline solids are well known and the current research
in this field is concentrated on subtle details or on extreme situations (e.g., weak localization,
the quantum Hall effect). In contrast, in spite of many years of investigation and a number of
insights, such a clear picture does not exist for amorphous solids where carriers are strongly
localized. This situation has led to a continuously growing research activity in the field.

The most popular approaches to the calculation of the resistance of amorphous solids
are based on the percolation network [1]. Among the percolation models, the most realistic
probably is the model with links of random resistances between the sites of the network [2].
At the present time any such link is usually envisioned as a number of resistors connected
in series. The resistances of separate resistors are activational functions of temperature with
randomly and independently distributed activation energies. So, given the activation energy
distribution, the distribution of the resistances at low temperature is very broad. For such a
broad distribution it is generally accepted that the resistance of one link is controlled by the
largest resistance in the series [3] and the resistance of the percolation cluster is controlled by
a critical resistance [4–7].

This picture leaves an unanswered question: to what extent is it possible to calculate the
resistance of a sample if the distribution of all constituent resistances is so broad? How strongly
can the resistances of two samples with different disorder realizations differ? Shapiro studied
such a problem in connection with the universal scaling near the mobility edge [8]. It appeared
that it was not the conductance of each sample that satisfied the universal scaling law but the
conductance distribution. Raikh and Ruzin calculated the distribution function of amorphous
film resistance and showed that it can be quite wide [9].

In the network of activation resistors, the situation can indeed be very dramatic, because
when temperature goes to zero the width of the distribution of the constituent resistances goes
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to infinity. And the purpose of this paper is to answer the question raised above in the simplest,
nearly trivial case, of a one-dimensional chain of N random resistors.

This answer is important for all systems where the transport can be considered as one-
dimensional or quasi-one-dimensional. These can be narrow-channel metal–oxide–semi-
conductor field-effect transistors which have been shown to be effectively one dimensional [10]
or thin insulating films where the transport is dominated by rare one-dimensional chains
with relatively large conductance [11–13]. Chains of resistors can also be good models for
polymers. The importance of the problem goes beyond one-dimensional systems, because a
one-dimensional chain can be considered as the simplest model of a link between sites of a
multi-dimensional network.

The study of the one-dimensional problem seems to be trivial. Indeed, the resistance of the
chain equals the sum of all constituent resistances and an analytic expression for the probability
distribution of the resistance can be immediately written down. However, the reduction of the
probability distribution of the chain resistance to a tractable form is not simple. The difficulty
appears when the number of resistors in the chain (N ) is large, which is the most interesting
case. For one specific case the distribution was studied by Raikh and Ruzin [9]. The purpose
of the present paper is to develop a general approach and to study a few of the most interesting
examples of the activation energy distribution. The result shows that when the temperature
is so small that the resistance of the chain is controlled by just one resistor, the resistance
distribution is not universal and its shape strongly depends on the distribution of the activation
energies of the separate constituent resistors (hereafter they will be called partial resistors).
Typically, the resistance distribution becomes so broad that the average resistance does not
make any sense; it is much smaller than the mean square deviation from it.

The paper is organized in the following way. After all necessary definitions are introduced
in section 2, possible asymptotic cases and related simplifications are considered in section 3.
The main problem in this consideration is the interplay between two dimensionless parameters
which strongly affects the chain resistance distribution. One parameter is the ratio of the width
of the activation energy distribution and temperature while the other is the number of partial
resistors. In section 4 the results obtained in the previous section are applied to some of the
most often encountered activation energy distributions. The last section contains a discussion
of the results.

2. Probability distribution of the chain resistance

The resistance R of the chain that consists of N resistors with the resistances r0eεk/T is just
the sum of those resistances:

R = r0

N∑
k=1

eεk/T . (2.1)

If the probability distributions p(ε) of all activation energies εk are the same, then the
probability distribution of the total resistance P(R) can be calculated with the help of the
characteristic function:

P(R) = 1

2π

∫
e−iRtF (t) dt (2.2)

where the global characteristic function F(t) is connected in a simple way to the partial
characteristic function f (t):

F(t) = f N(t) (2.3a)

f (t) =
∫

exp(itr0eε/T )p(ε) dε. (2.3b)
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In the calculation of F(t), sometimes it is important to remember that because r0 > 0 the
integral (2.3b) is convergent for Im t > 0. As a result f (t) is regular in the upper half of the
complex plane t . This property makes the integral in equation (2.2) equal to zero for R < 0,
i.e., the probability of finding a negative resistance equals zero.

The characteristic function can be expanded in the momenta of P(R):

F(t) =
∞∑
k=0

(it)k

k!
Rk (2.4)

where

Rk =
∫

P(R)Rk dR. (2.5)

With the help of equation (2.3), these momenta can be expressed in terms of the averaged
powers of partial resistances:

Rk =
∑

l1+2l2+3l3+···=k
l0+l1+l3+···=N

N !k!

l0!l1!l2!l3! · · ·
(
r

1!

)l1
(
r2

2!

)l2
(
r3

3!

)l3

· · · (2.6)

where

rk = rk0

∫
ekε/T p(ε) dε. (2.7)

3. Main extreme cases

3.1. Universal Gaussian distribution

The simplest and most well known distribution of the resistance is obtained if the temperature
is not very small compared to the width of p(ε), E. In this case many resistors contribute to
the resistance of the chain and the resistance distribution P(R) is Gaussian. Hereafter it will
be called the universal Gaussian distribution to distinguish it from the Gaussian distribution of
the activation energies p(ε). Formally, it is obtained from the exponential expansion

F(t) = eN ln f (t) = exp

(
N

∞∑
k=1

ck(it)
k

)
(3.1)

where

ck =
∑

l1+2l2+3l3+···
(−1)l1+l2+···−1 (l1 + l2 + · · · − 1)!

l1!l2!l3! · · ·
(
r

1!

)l1
(
r2

2!

)l2
(
r3

3!

)l3

· · · . (3.2)

If in the exponent in equation (3.1) all terms containing tk with k > 2 are neglected, i.e.,

F(t) = exp

[
iNtr − Nt2

2
(r2 − r2)

]
(3.3)

then

P(R) = 1√
2π(�R)2

e−(R−R)2/2(�R)2
(3.4)

where R = Nr and (�R)2 = N(r2 − r2).
The criterion for the validity of equation (3.3) can be obtained in the following way. When

equation (3.3) is substituted in equation (2.2), the main contribution to the integral comes from
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t ∼ 1/
√
N(r2 − r2). The result is valid if in this region of the integration all neglected terms

are small, i.e., ck/[N(r2 − r2)]k/2 � 1. It is enough to satisfy this criterion for k = 3, which
gives

r3 − 3r2r + 2r3

6(r2 − r2)3/2
� N1/2. (3.5)

3.2. Low temperature

When the temperature is small compared to the width of the energy distribution:

T � E (3.6)

the contribution to R of the resistors with small activation energy can be neglected. In other
words, one can expect only a high-energy tail of p(ε) to be important for the calculation of
P(R). The situation is, however, complicated by the fact that the number of resistors with
high activation energies is relatively small and when the activation energy goes down the
growth of the number of resistors can compete with the reduction of their resistance. The only
simplification that can be made under the condition (3.6) is that the characteristic scale of R
(which can be the width of P(R)) is much larger than the average partial resistance. This
means that partial characteristic function (2.3b)

f (t) = 1 +
itr0

1!

∫
eε/T p(ε) dε +

(itr0)
2

2!

∫
e2ε/T p(ε) dε + · · · (3.7)

is very close to unity because the characteristic values of t are of the order of the characteristic
1/R. As a result, the global characteristic function (2.3a)

F(t) = exp

{
N ln

[
1 −

∫
(1 − eitr0 exp(ε/T ))p(ε) dε

]}

≈ exp

{
−N

∫ [
1 − eitr0 exp(ε/T )

]
p(ε) dε

}
. (3.8)

The same expression can be obtained in a more intuitive way. Under the condition (3.6),
the chain resistance R can be approximated by the sum of the resistors with activation energies
larger than some value ε. The probability distribution of n activation energies ε1, ε2, . . . , εn
such that ε1 > ε2 > · · · > εn > ε is

pMn(ε1, ε2, . . . , εn; ε) = N !

(N − n)!
wN−n(ε)θ(εn − ε)

[
n−1∏
j=1

θ(εj − εj+1)

] [
n∏

j=1

p(εj )

]

(3.9)

where

w(ε) =
∫ ε

−∞
p(ε′) dε′ (3.10)

is the probability of the activation energy being smaller than ε. The integration of pMn with
respect to ε1, ε2, . . . , εn results in the binomial distribution of N − n energies in the interval
(−∞, ε) and n energies in the interval (ε,∞):∫

pMn(ε1, ε2, . . . , εn; ε) dε1 dε2 · · · dεn = N !

(N − n)!n!
wN−n(ε)[1 − w(ε)]n

≈ nn(ε)

n!
e−n(ε). (3.11)
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The number of resistors contributing to R is much smaller than N , so the binomial distribution
can be approximated with the Poissonian one, where n(ε) = N [1 − w(ε)] is the average
number of activation energies larger than ε.

Under the same condition, the characteristic function

F(t) =
N∑
n=0

∫
exp

(
itr0

n∑
j=1

eiεj /T

)
pMn(ε1, ε2, . . . , εn; ε) dε1 dε2 · · · dεn

≈ e−n(ε)
∞∑
n=0

Nn

n!

∫ ∞

ε

exp

(
itr0

n∑
j=1

eiεj /T

) n∏
l=1

p(εl) dεl

= exp

{
−N

∫ ∞

ε

[
1 − eitr0 exp(ε/T )

]
p(ε′) dε′

}
(3.12)

which is reduced to equation (3.8) when ε goes to −∞.
For a large enough N and low temperature, both conditions (3.6) and (3.5) are satisfied.

In this region the integral in the exponent in equation (3.8) can be expanded in t , which leads
eventually to the universal Gaussian distribution. The only difference between this distribution
and equation (3.3) is that in the low-temperature case r2 is neglected compared to r2. Under
the condition (3.6), the relation r2 � r2 is true for any continuous and smooth enough energy
distribution.

3.3. Extremely low temperature

For an extremely low temperature the difference between the largest activation energy and the
next one to it, �, is larger than the temperature. Under this condition, the value of the chain
resistance is exponentially close to the value of the largest partial resistance. The probability
distribution of the largest activation energy is

pM1(ε) = Ne−n(ε)p(ε). (3.13)

This immediately gives the characteristic function

F(t) = N

∫
e−n(ε)+itr0 exp(ε/T )p(ε) dε (3.14)

and the distribution function

P(R) = T

R
pM1

(
T ln

R

r0

)
. (3.15)

To find the region of parameters where equation (3.15) is justified, it is convenient to start
with the probability distributions of the two largest activation energies ε and ε − � (� > 0):

pM2(ε, ε − �) = N(N − 1)wN−n(ε − �)p(ε)p(ε − �) ≈ e−n(ε−�)N2p(ε)p(ε − �).

(3.16)

With the help of this expression, the probability distribution of the difference � assuming
� � ε is

pD(�) =
∫

pM2(ε, ε − �) dε = N2
∫

e−n(ε)−N�p(ε)p2(ε) dε. (3.17)

This means that � ∼ 1/Np(εm) where εm is the most probable value of the maximal energy
(this is the point where the most important factor in the integrand in equation (3.17), namely
p(ε)e−n(ε), has a maximum). The latter can be found from the equation

Np2(εm) + p′(εm) = 0. (3.18)
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So equation (3.15) is justified if

T � 1/Np(εm). (3.19)

Practically, this criterion is the opposite to equation (3.5). This can be easily seen for all p(ε)
considered in section 4.

Generally speaking, the temperature region where inequality (3.19) is satisfied is a part
of the region limited by the condition (3.6). This means that the distribution (3.15) is a
particular case of a more general distribution obtained from the characteristic function (3.8).
The corresponding derivation is given in appendix A.

4. Some specific activation energy distributions

In this section the chain resistance distribution function is calculated for some simple and
often used activation energy distributions. The simplest of them is the discrete distribution
where the activation energy can take values ±E. A similar distribution is sometimes used in
percolation problems [14]. Then the uniform distribution where the energy can take any value
in some interval with equal probability is considered. The uniform distribution is often used
in simulations related to the Coulomb gap problem [1]. Then also the Gaussian distribution
and exponential distribution are studied. The Gaussian distribution is encountered so often
that it does not need any comment. The exponential distribution also appears in practice and
it is particularly interesting because the existence of rk in this case depends on temperature.
Finally the Lorentzian distribution is considered. This distribution appears in some glass
problems [15, 16] and is an example of a distribution with long tails for which no momentum
exists.

4.1. Discrete distribution

Probably the simplest example of a random distribution is

p(ε) = wδ(ε + E) + (1 − w)δ(ε − E) (4.1)

where w < 1. This immediately gives

P(R) =
N∑
k=0

N !

k!(N − k)!
wk(1 − w)N−kδ(R − kr0e−E/T − (N − k)r0eE/T ). (4.2)

When N � 1 the maximum contribution to the sum comes from k close to that which gives
the maximum to the coefficient for the δ-function, and equation (4.2) can be reduced to

P(R) =
∑
j

1√
2πNw(1 − w)

e−j 2/2Nw(1−w)

× δ(R − (wN + j)r0e−E/T − (N − wN − j)r0eE/T ). (4.3)

This distribution is discrete. At high temperature, T � E, the discreteness is not signif-
icant. If it is neglected, the sum in equation (4.3) can be replaced with an integral which results
in the universal Gaussian distribution (3.3) with parameters R = Nr0[1 + (1 − 2w)E/T ] and
(�R)2 = 4Nr2

0w(1 − w)(E/T )2.
At low temperature, T � E, the contribution of resistances with the activation energy −E

can be neglected. The distribution (4.2) in this case is strongly discrete and equations (3.12)
and (3.15) give quite a rough approximation.
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4.2. Uniform distribution

The uniform distribution is

p(ε) =



1

2E
|ε| < E

0 |ε| > E.
(4.4)

The average powers of the partial resistances in this case are

rk = rk0
T

kE
sinh

kE

T
. (4.5)

The universal Gaussian distribution has parameters

R = r0
NT

E
sinh

E

T
(4.6a)

(�R)2 = r2
0
NT

2E

(
sinh

2E

T
− 2T

E
sinh2 E

T

)
. (4.6b)

According to equation (3.5), this distribution is valid when N � 1 + (E/T ).
At low temperature, when E � T but the condition N � E/T is still satisfied, equ-

ation (4.6) is simplified and the universal Gaussian distribution is equivalent to the distribution
of the chain of equal resistances, (r0/2)eE/T , whose number has a Poissonian distribution with
the average value NT/E.

In general, at low temperature, E � T , the distribution function can be reduced to the
form

P(R) = 1

2π

∫
exp

[
−itR − NT

2E

∫ trM

0
(1 − eiu)

du

u

]
dt (4.7)

where rM = r0eE/T is the maximal partial resistance.
The average separation between activation energies is E/N and further simplification of

the distribution function can be achieved at temperatures smaller than this value:

E � NT. (4.8)

This condition is opposite to the criterion for the validity of the universal Gaussian distribution
at low temperature. Then equation (3.15) gives

P(R) = NT

2ER

(
rM

R

)NT/2E

(4.9)

where R < rM . This distribution is characterized by the average value R = NrM(T /2E) and
the standard deviation√

(�R
2
) = rM

√
NT/4E.

That is, the width of the distribution is larger than the average resistance by the factor
(E/NT )1/2 � 1.

4.3. Gaussian distribution

The Gaussian distribution is

p(ε) = 1√
2πE

e−ε2/2E2
(4.10)

with ε2 = E2. The average powers of the partial resistances

rk = rk0 ek
2E2/2T 2

. (4.11)
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This expression shows that the momenta of the chain resistance distribution, Rk , all exist but
grow with k so fast that the series (2.4) for the characteristic function diverges.

Under the condition (3.5) which now takes the form N � 1 + e3E2/2T 2
, P(R) becomes

the universal Gaussian distribution with the parameters

R = Nr0eE
2/2T 2

(4.12a)

(�R)2 = Nr2
0 (e

2E2/T 2 − eE
2/T 2

). (4.12b)

At low temperature, T � E, the characteristic function (3.8) contains complicated
integrals which, in general, cannot be simplified. For this reason it makes sense to consider
only the case of extremely low temperature.

According to equation (3.18), the most probable value of the maximal activation energy
εm = xmE where xm has to be found from the equation

xm = N√
2π

e−x2
m/2 (4.13)

which gives xm ≈ √
2 lnN . So the condition for extremely low temperature (3.19) is

T � E/xm ≈ E/
√

lnN. (4.14)

The average number of activation energies above the value of ε � E is

n(ε) = N√
2πE

∫ ∞

ε

e−x2/2E2
dx ≈ NE√

2πε
e−ε2/2E2

(4.15)

and the distribution of the maximal activation energy (3.13) becomes

pM1(ε) = N√
2πE

exp

(
− NE√

2πε
e−ε2/2E2 − ε2

2E2

)
. (4.16)

This function has a sharp maximum at ε = εm. Let δε = ε − εm; then in the region |δε| � E,

pM1(ε) = xm

E
exp

(
−e−xm δε/E − xm δε

E

)
. (4.17)

It is easy to see that the normalization integral of this distribution converges in the region
|δε| ∼ E/xm � E, which means that the expansion in the region |δε| � E is justified.

Thus, under the condition (4.14), equation (3.15) results in

P(R) = 1

R

xmT

E

(
rM

R

)xmT/E

e−(rM/R)
xmT/E

(4.18)

where rM = r0eεm/T .
This distribution gives

R = rM"

(
E

T xm
+ 1

)
≈ rM

√
2π

(
E

T xm

)E/T xm+1/2

e−E/T xm (4.19)

and the most probable value

RP=max = rM

[
xmT/E

1 + (xmT /E)

]E/xmT
≈ rM

e

(
xmT

E

)E/xmT

. (4.20)

First of all it is interesting to note that the average resistance and the most probable resistance
are of different order, R � RP=max . This results from the large width of the distribution
(4.18). This distribution is so broad that its second moment, R2, does not exist.

These results can be compared with the exact expression for R and (�R)2 for T � E,
equation (4.12). Under the condition (4.14), the value of R obtained from equation (4.12a) is
much larger than that obtained from equation (4.19). This also is an indication that the width
of the exact distribution is much larger than the width of its maximum. A very large width is
manifested also in the inequality (�R)2 � (R)2 that follows from equation (4.12) for T � E.
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4.4. Exponential distribution

The exponential distribution is defined as

p(ε) = 1

2E
e−|ε|/E. (4.21)

Moments of partial resistances exist only for high enough temperature:

rk = rk0
T 2

T 2 − k2E2
(4.22)

for T > kE.
The universal Gaussian distribution (3.4) exists only for T > 2E and has parameters

R = Nr0
T 2

T 2 − E2
(4.23a)

(�R)2 = Nr2
0

T 2E2(2T 2 + E2)

(T 2 − E2)2(T 2 − 4E2)
. (4.23b)

According to equation (3.5), the distribution is definitely valid when T > 3E, and r3 does
exist. One can hope, however, that for its validity the existence of r2, i.e., T > 2E, is enough.
This can indeed be proved with the help of the study of

f (t) = T

2E

[∫ 1

0
eitr0xx(T /E)−1 dx + φ(tr0)

]
(4.24a)

φ(t) =
∫ ∞

1
eitxx−(T /E)−1 dx (4.24b)

except for a very narrow region of temperature near 2E. In the close vicinity of 2E, the
distribution deviates from the universal Gaussian one.

Even when the universal Gaussian distribution is not valid it is possible to use the same
approach as led to equation (3.3) in order to find the true distribution. The point is that when
the temperature is not small compared toE, then sinceN � 1 only small values of t contribute
to the integral in equation (2.2). So it is necessary to find the behaviour of f (t) at small t . The
first term in equation (4.24a) is a regular function of t and only φ(t) presents a little problem.
In the region 2E > T > E,

φ(t) = E

T
+
E

T

(
E

T − E
− 1

)
it +

E2

T (T − E)
|t |T/Ee−i(πT /2E)sgn(t)"(2 − T/E) (4.25)

which leads to

P(R) = 1

π �R
QT/E

(
R − R0

�R

)
(4.26)

where

Qν(ρ) = Re
∫ ∞

0
e−iρt+tνe−iπν/2

dt (4.27)

and

R0 = NE2

T 2 − E2
r0 (4.28a)

�R =
∣∣∣∣N2 "(1 − T/E)

∣∣∣∣
E/T

r0. (4.28b)
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If T < E, then in the expansion of φ(t) only terms of the lowest order in t have to be
kept, i.e.,

φ(t) = E

T
− E

T
|t |T/Ee−iπ(T /2E)sgn(t)"(1 − T/E) (4.29)

which results in

P(R) = 1

π �R
QT/E

(
R

�R

)
. (4.30)

In the regions where the temperature is very close to 2E or E, expressions (4.26) and (4.30)
have also some logarithmic corrections.

If T � E, equation (4.30) is still valid and equation (4.27) can be simplified, so

P(R) = T

R

N

2E
exp

[
−N

2

(
r0

R

)T/E
] (

r0

R

)T/E

. (4.31)

The same result can be obtained with the help of equation (3.15). The most probable maximal
activation energy for the exponential distribution is εm = E ln(N/2), and equation (3.19) gives
for this result the same criterion, T � E.

The most probable resistance of the distribution (4.31) is

RP=max = r0

[
NT/E

2(1 + T/E)

]E/T
≈ r0

e

(
NT

2E

)E/T

. (4.32)

No momenta of this distribution exist, which is an indication that it is very broad and deviations
from the most probable value can be very big.

4.5. Lorentzian distribution

The Lorentzian distribution:

p(ε) = 1

π

E

ε2 + E2
(4.33)

is so broad that all its momenta are infinite. For this reason it does not lead to the universal
Gaussian distribution when T � E. But at high temperature, T � E,

f (t) = 1

π

∫
exp

[
itr0e(E/T )x

] dx

x2 + 1
≈ 1

π

∫
eitr0[1+(E/T )x] 1

x2 + 1
dx = eitr0−|t |r0(E/T ).

(4.34)

As a result the chain resistance distribution:

P(R) = 1

π

Nr0(E/T )

(R − Nr0)2 + (Nr0E/T )2
(4.35)

is the Lorentzian distribution.
At low temperature:

NE � T (4.36)

it is convenient to make use of the probability distribution of the maximal energy,

pm(ε) = NE

πε2
e−NE/πεθ(ε) (4.37)

and equation (3.15) gives

P(R) = NE

πRT ln2(R/r0)
exp

[
− NE

πT ln(R/r0)

]
θ(R − r0). (4.38)

This distribution also has such long tails that it has no moment.
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5. Conclusions

In previous sections, the distribution of the chain of resistors with random activation energies
has been calculated for different temperature regions. The simplest situation appears at
temperature larger than the width of the activation energy distribution. Then, many resistors
contribute to the chain resistance and the distribution of the chain resistance is Gaussian.

In the most interesting case, when the temperature is so small that the total resistance is
controlled by only one resistor with maximal activation energy, the situation is quite different.
The resistance distribution in this case is so wide that its breadth is larger than the average chain
resistance. This makes the characterization of a chain by its average resistance meaningless.
According to equation (3.15), the distribution of the resistance logarithm (compare reference
[9]) is not that wide, but the measured quantity is still the resistance. Another important
feature is that in the low-temperature case the chain resistance distribution is not universal
and strongly depends on the activation energy distribution. For example, for the Lorentzian
activation energy distribution, even the average value of the chain resistance logarithm does
not exist.

Appendix A. Expansion in the number of high activation energies

It is possible to obtain an expansion for the characteristic function (3.8) in the number of
resistors with highest activation energies that eventually leads to equation (3.14). For this
purpose it is convenient first to present the expression for F(t) in a form that emphasizes the
importance of high activation energies, namely,

F(t) = 1 + N

∫ ∞

−∞
exp

[
−n(ε) + N

∫ ∞

ε

eitr0 exp(ε′/T )p(ε′) dε′
] [

eitr0 exp(ε/T ) − 1
]
p(ε) dε.

(A.1)

The factor e−n(ε)p(ε) concentrates the integrand in the region close to the highest activation
energy εm � E. For T � E the oscillating function in the integrand of the integral with
respect to ε′ limits the integration to a region of the order of T and a good estimate of the
integral in the exponent is

N

∫ ∞

ε

eitr0 exp(ε′/T )p(ε′) dε′ = Neitr0 exp(ε/T )
∫ ∞

0
eitr0 exp(x/T )p(ε + x) dx ∼ NTp(ε). (A.2)

So, under the condition (3.19), the integrand in equation (A.1) can be expanded in the integral
in the exponent:

F(t) = 1 +
∞∑
n=1

Nn

(n − 1)!

∫ ∞

−∞
e−n(ε)p(ε) dε

[∫ ∞

ε

eitr(ε′)p(ε′) dε′
]n−1 [

eitr(ε) − 1
]
. (A.3)

This series can be transformed with the help of the identity

Fn(t) = Fn−1(t) +
Nn

(n − 1)!

∫ ∞

−∞
e−n(ε)p(ε) dε

[∫ ∞

ε

eitr(ε′)p(ε′) dε′
]n−1 [

eitr(ε) − 1
]

(A.4)

which can be obtained by integration by parts and where

Fn(t) = Nn

(n − 1)!

∫ ∞

−∞
e−n(ε)p(ε) dε

[∫ ∞

ε

eitr(ε′)p(ε′) dε′
]n−1

(A.5)

and the term of the order of e−N is neglected.
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The identity (A.4) gives

F(t) = lim
n→∞Fn(t). (A.6)

On the other hand, under the condition (3.19), F(t) ≈ Fn(t) with a small value of n. For a
finite value of n, the expression (A.5) for Fn(t) can be written as the characteristic function of
the distribution of the sum of n resistances with largest activation energies:

Fn(t) =
∫

eitr0
∑n

j=1 exp(εj /T )pMn(ε1, ε2, . . . , εn)

n∏
j=1

dεj (A.7)

where

pMn(ε1, ε2, . . . , εn) = e−n(εn)Nn

[
n−1∏
j=1

θ(εj − εj+1)

] [
n∏

j=1

p(εj )

]
(A.8)

is the probability distribution of the n largest activation energies (compare equation (3.9)). For
n = 1, equation (A.8) becomes (3.14).
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